Finding Possibly Related Entities



Elon Musk's Tesla Powerwalls Have Landed in Puerto Rico

0000

The solar batteries have reportedly been spotted in San Juan's airport.

By John Patrick Pullen Octaber 164, 2017
Exzctly one week after Tesla CEO Elon Musk suggested his company could help with Puerto Rico’s electricity

crisis in the aftermath of Hurricane Maria, more of the company’s Powerwall battery packs have arrived on

the island, according to & photo snapped at San Juan airport Friday, Oct. 13,

Source: http.//fortune.com/201 7/10/16/elon-musks-tesia-powerwalls-have-landed-in-puerto-rico/
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What does it mean for a named entity to co-occur with itself?
Example: could count # articles in which word appears = 2 times



Different Ways to Count



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”

and “

esla” appear 10 times, we count this as 1)



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”
and “Tesla” appear 10 times, we count this as 1)

e (Could instead add # co-occurrences, not just
whether it happened in a doc




Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”
and “Tesla” appear 10 times, we count this as 1)

e (Could instead add # co-occurrences, not just
whether it happened in a doc

e |nstead of looking at # doc’s, look at co-occurrences
within a sentence, or a paragraph, etc



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”
and “Tesla” appear 10 times, we count this as 1)

e (Could instead add # co-occurrences, not just
whether it happened in a doc

e |nstead of looking at # doc’s, look at co-occurrences
within a sentence, or a paragraph, etc

Bottom Line



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”
and “Tesla” appear 10 times, we count this as 1)

e (Could instead add # co-occurrences, not just
whether it happened in a doc

e |nstead of looking at # doc’s, look at co-occurrences
within a sentence, or a paragraph, etc

Bottom Line
* There are many ways to count co-occurrences



Different Ways to Count

e Just saw: for all doc’s, count # of doc’s in which two
named entities co-occur

e This approach ignores # of co-occurrences within a
specific document (e.q., if 1 doc has “Elon Musk”
and “Tesla” appear 10 times, we count this as 1)

e (Could instead add # co-occurrences, not just
whether it happened in a doc

e |nstead of looking at # doc’s, look at co-occurrences
within a sentence, or a paragraph, etc

Bottom Line
* There are many ways to count co-occurrences

 You should think about what makes the most sense/is
reasonable for the problem you’re looking at



We aim to find interesting relationships
by looking at co-occurrences



Image source. htto.//www.awf.org/sites/detault/files/media/gallery/wildlite/Plains%20/ebra//-Billy_Dodson_3.jog?itok=rzMdZ7[LM




Black and white frequently co-occur, but is this relationship interesting”

Image source. htto.//www.awf.org/sites/detault/files/media/gallery/wildlite/Plains%20/ebra//-Billy_Dodson_3.jog?itok=rzMdZ7[LM




Black and white frequently co-occur, but is this relationship interesting”

How I'm counting: For each pixel, look at neighboring 4 pixels and compare their values

L 1

(1 of “green green”, “green white”, “green black”, “white white”, “white black”, “black black”)

L 1

Image source. htto.//www.awf.org/sites/detault/files/media/gallery/wildlite/Plains%20/ebra//-Billy_Dodson_3.jog?itok=rzMdZ7[LM
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Probability of drawing
“White, Black”?

350/5750

Probability of drawing a
card that has “White” on it?

(200+2000+350)/5750
1000 of these cards: Green, Green
200 of these cards: Green, White
200 of these cards: Green, Black
Total number
. . of cards:
DN ~nf threns AnvAos \A/hitsa \ A/ Wit

P(Green, White) =—=2>—  P(Green, Black) =—=22—  P(White, Black) = —>>

5750 5750 5750
P(Green) = 1400 P(White) = 2000 P(Black) = 2590
5750 5750 5750
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P(A) PB) Higher PMI =
Mmore surprising
PMI(Green, White) = log; 20075750 —"1.63... bits :
(1400/5750)(2550/5750) ,
PMI(Green, Black) = [og: 20075750 —i1.63... bits |
(1400/5750)2550/5750)  ~=---- B
PMI(White, Black) = logs SoU/o 700 — -1.69... bits
(2550/5750)(2550/5750)
P(Green, White) =—229_  P(Green, Black) =—222_  P(White, Black) = —2°
5750 5750 5750
P(Green) = 299 P(White) = 2229 P(Black) = 2229

5750 5750 5750



What is PMI Measuring?



What is PMI Measuring?




What is PMI Measuring?




What is PMI Measuring?




What is PMI Measuring?




What is PMI Measuring?

P(A, B)
PA)-PEB)

If A and B were “independent”
=> probability of A and B co-occurring would be P(A)P(B)
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A, B Interpretation: neighboring pixels not close to being indep.
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Elon Musk Tesla Apple Tim Cook

Elon Musk
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Elon Musk
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PMI, phi-square, chi-square calculations are done the same way
Main things to calculate first:

P(Elon Musk, Tesla) P(Elon Musk)
P(Elon Musk, Apple) P(Tim Cook)
P(Tim Cook, Tesla) P(Tesla)
P(Tim Cook, Apple) P(Apple)

The math here is actually a bit easier to think albout
because the rows and columns aren't indexing the same items
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Back to Earlier Example

Elon Musk
Total: 497
Tim Cook
{ Divide by total
These are the joint probabilities! Tesla Compute "marginals”
Elon Musk 300/497 1/497 300/497+1/497
Tiin Cook —»195/497 | 1/497+195/497
P(Elon Musk, Tesla) /497+1/497  1/497+195/497 P(Elon Musk)

P(Elon Musk, Apple) P(Tim Cook)
Not just for 2 by 2 tables
(e.g., we could have many

P(Tim Cook, Apple) people, many companies)

P(Tim Cook, Tesla) P(Tesla)

P(Apple)
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e Joint probability P(A, B) can be poor indicator of
whether A and B co-occurring is “interesting”

* Find interesting relationships between pairs of items
by looking at PMI

* [ntuition: “Interesting” co-occurring events should
occur more frequently than if they were to
CO-Occur independently



Example Application of PMI:
Image Segmentation

Phillio Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary detection
using pointwise mutual information. ECCV 2014,



Example Application of PMI:
Word Embeddings
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Causallty

Studies in 1960's: Coffee drinkers have higher rates of lung cancer

Can we claim that coffee is a cause of lung cancer?

Back then: coffee drinkers also tended to smoke more than non-coffee

To establis

drinkers (smoking is a confounding variable)

N causality, groups getting different treatments need to

appear similar so that the only difference is the treatment
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Establishing Causality

If you control data collection

Treatment
pad Group

Users Compare outcomes of two groups

™~ %ontrol Randomized controlled trial (RCT)
roup also called A/B testing

Randomly assign
Example: figure out webpage layout to maximize revenue (Amazon)

Example: figure out how to present educational material to improve
learning (Khan Academy)

If you do not control data collection

In general: not obvious establishing what caused what
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each token/symbol based on
observed frequencies in the data
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B8+ the model parameters

e (Can reason about probability of
8 & drawing different outcomes

7@ 7’* % N "Fitting the model":

In general: often not as simple as using frequencies in the data
Also: how do we know unigram bag of words is the "right" model”
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